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The boundary layer generated by the harmonic oscillations of a wavy wall in a fluid 
otherwise at rest is studied. First the wall waviness is assumed to be of small amplitude 
and large values of the Reynolds number are considered. The results obtained by 
means of a linear analysis, where the time variable appears only as a parameter, show 
that resonance may occur. Indeed it is found that when the Reynolds number is larger 
than a critical value, an instant within the decelerating part of the cycle exists such that 
a waviness of infinitesimal amplitude induces unbounded perturbations of the flow in 
the Stokes layer. The passage through resonance is then studied by means of a 
multiple-timescale approach, taking into account the damping effect of local 
acceleration within a small time range around resonance. The asymptotic approach 
fails beyond a threshold value of the Reynolds number, because the damping effect of 
the local acceleration terms spreads over the whole cycle. The problem is then tackled 
by means of an approach that takes into account the above damping effect throughout 
the whole cycle. Finally, a numerical procedure is used that also allows the inclusion 
of nonlinear terms and the study of the interactions among forced and free modes. The 
numerical approach reveals that, even for relatively large values of the amplitude of the 
wall waviness, nonlinear effects are negligible and the damping of resonance is mainly 
due to local acceleration effects. The relevance of the results to the understanding of 
transition to turbulence in Stokes layers is discussed. 

1. Introduction 
The boundary layer generated by the harmonic oscillations of a fluid parallel to an 

infinite fixed plate, or conversely by the oscillations of a plate in a fluid otherwise at 
rest, being a prototype oscillatory boundary layer, has received considerable attention. 

The case of a flat plate has been extensively studied since Stokes (1855) determined 
an exact solution of the Navier-Stokes equations. Since then many experimental, 
theoretical and numerical studies have been devoted to the study of transition from the 
laminar to the turbulent regime and of the turbulent characteristics of this flow. 

On the experimental side, Li (1954) examined the boundary layer close to an 
oscillating plate and claimed, using visual means, that the critical value of the Reynolds 
number for transition to turbulence is 565. The Reynolds number R, is defined as 
U,*S*/v, U t  and w* being the amplitude and the angular frequency of the velocity 
oscillations of the plate, v the kinematic viscosity of the fluid and 6* the characteristic 
viscous length (2v/w*);. 

Sergeev (1966), Merkly & Thomann (1975), Hino, Sawamoto & Takasu (1976) and 
Eckmann & Grotberg (1991) examined transition in oscillatory pipe flow. Sergeev 
(1966) used both visual means and measurements of the power input to the driving 
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motor to assess transition. In a series of experiments he found a critical Reynolds 
number of about 500. Merkly & Thomann (1975) found that perturbations to the 
laminar flow are present when the Reynolds number is larger than a value 
approximately equal to 280. Moreover, they observed that turbulence occurs in the 
form of periodic bursts which are followed by relaminarization within the same cycle 
and did not observe any case in which turbulence occurred throughout the whole cycle. 
Hino et al. (1976) found that disturbances of the laminar flow first appear at Reynolds 
numbers in the range 70-550 depending on the ratio r between the thickness of the 
Stokes boundary layer and the radius of the pipe, provided the latter is not too small. 
However, they found that the velocity profiles exhibit only small deviations from the 
laminar case. On the contrary when the Reynolds number exceeds 550, for every value 
of r except for very small values, the velocity profiles are disturbed by fluctuations 
which are much larger than those characterizing the previous regime. In this situation 
laminar perturbations appear only in the decelerating phases while in the accelerating 
phases the flow recovers laminar-like features. Thus this Reynolds-number regime was 
described by Hino et al. (1976) as ‘conditional turbulence’. Finally Hino et al. (1976) 
introduced the term ‘fully turbulent ’ to describe states where perturbations are present 
both in the accelerating and decelerating phases. However, they were unable to observe 
such a regime. Ramaprian & Muller (1980) carried out experiments at a fixed value of 
the Reynolds number (namely 370) hence they could not identify a critical value for 
transition. They found that at the above Reynolds number disturbances are present, 
but defined the flow as ‘transitional’ rather than turbulent. Indeed the flow exhibited 
velocity distributions only mildly different from those predicted by the laminar theory, 
although the presence of turbulence activity could be inferred from the instantaneous 
velocity signal. Also Tromans (1976) detected different levels of turbulence. He found 
a critical value of the Reynolds number for the onset of instability equal to 130 and a 
value equal to 500 above which he observed what he defined as the turbulent regime. 
As in Merkly & Thomann’s (1975) experiment Tromans found that turbulence appears 
only during decelerating phases, while in the accelerating phases the flow recovers a 
laminar behaviour. More recently Eckmann & Grotberg (1991) detected transition to 
turbulence at R, equal to 500 and found turbulence only during decelerating phases of 
the motion confined to an annular region near the pipe wall. Finally, Monkewitz & 
Bunster (1985) observed that the laminar Stokes profile shows no significant distortion 
up to values of the Reynolds number of approximately 500. Moreover they found that 
a vortical disturbance appeared very clearly at a Reynolds number equal to 647 just 
before flow reversal. 

From the picture emerging from experimental observations one may conclude that 
for values of the Reynolds number ranging from the laminar to the fully developed 
turbulent regime characterized by turbulence present throughout the cycle, two other 
broad flow regimes can be identified: 

(i) a disturbed laminar regime, where ‘ small-amplitude’ perturbations appear 
superimposed on the Stokes flow, 

(ii) an intermittently turbulent flow, where bursts of turbulence appear explosively 
only during the decelerating phases of the cycle. 

The former regime takes place for values of the Reynolds number R, falling 
approximately within the range 100-500. The latter regime appears for R, larger than 
about 500 but smaller than a value which has not been experimentally determined yet. 

On the theoretical side Von Kerczek & Davis (1974) and Hall (1978) performed 
linear stability analyses of ‘finite’ and ‘infinite’ Stokes layers. They found the flow to 
be stable within the investigated range of the Reynolds number. Von Kerczek & Davis 



Stokes-layer transition 109 

(1974) for the finite case and later Blondeaux & Seminara (1979) for the infinite case 
adopted a ‘momentary’ criterion for instability and found that for R, larger than 86 
there are parts of the cycle near flow reversal during which the flow is unstable. Parts 
of the cycle within which the flow turns out to be unstable were also shown by Tromans 
(1976), Monkewitz (1983) and Cowley (1987). 

More recently Akhavan, Kamm & Shapiro (1991) studied the time development of 
disturbances of Stokes flow both of infinitesimal and finite amplitude by means of the 
numerical simulation of Navier-Stokes and continuity equations. In accordance with 
the analyses of Von Kerczek & Davis (1974) and Hall (1978), all infinitesimal 
disturbances were found to decay. However, infinitesimal three-dimensional dis- 
turbances were found to grow when interacting with pre-existing finite-amplitude two- 
dimensional waves. Akhavan et al. (199 1) tried to explain this numerical finding using 
ideas developed by Pierrehumbert (1986), Bayly (1986) and Landman & Saffman 
(1987) in different contexts. In the latter works it is shown that in many shear flows the 
existence of two-dimensional finite-amplitude waves leads to vortical structures within 
the flow which in approximate form can locally be described by elliptical streamlines. 
These local eddy flows turn out to be unstable with respect to three-dimensional 
perturbations, the growth of which may lead to turbulence. This instability mechanism 
was found to be effective in a wide class of wall-bounded shear flows, including plane 
and pipe Poiseuille flows, Couette flow and flat-plate boundary layers (Bayly, Orszag 
& Herbert 1988). It is worth pointing out that the instability mechanism of shear flows 
described in the above works depends critically on the existence of two-dimensional 
linearly unstable disturbances, the time development of which because of nonlinear 
effects leads asymptotically to finite-amplitude waves. On the other hand the above 
mechanism is independent of the details of the basic flow. 

From the results of Akhavan et al. (1991), it thus appears that the presence of two- 
dimensional waves of finite amplitude is crucial in triggering transition to turbulence. 
The momentary instability of the Stokes layer predicted on the basis of a linear analysis 
(Von Kerczek & Davis 1974; Blondeaux & Seminara 1979) does not provide a full 
justification for the existence of the finite-amplitude waves necessary to trigger the 
explosive growth of three-dimensional perturbations. Indeed in accordance with the 
results by Von Kerczek & Davis (1974) and Hall (1978), two-dimensional perturbations 
of small amplitude are found by Ahkavan et al. (1991) to experience a net decay over 
a cycle and, if present, they would disappear after few cycles. 

With this in mind, we study the two-dimensional viscous oscillatory flow over a wavy 
wall of small amplitude to see if small imperfections of the wall may induce large flow 
perturbations and trigger transition to turbulence. 

While the present work was in progress, a possible mechanism for the generation of 
large-amplitude perturbations in a flat Stokes layer was pointed out by Wu (1992), who 
considered the nonlinear evolution of a high-frequency inviscid disturbance, composed 
of a two-dimensional wave and a pair of oblique waves. He showed that the amplitudes 
of the three waves can develop a finite-time singularity, the explosive growth being 
induced by nonlinear interactions inside critical layers. In the inviscid analysis by Wu 
(1992), R, is required to be much larger than the inverse of the dimensionless amplitude 
of the perturbations. It follows that when the initial amplitude of the perturbation is 
very small, extremely large values of R, are considered or conversely for a fixed value 
of R, only perturbations characterized by relatively large values of the initial 
amplitudes can be analysed. One of the referees has pointed out that recently Wu, Lee 
& Cowley (1993) and Wu & Cowley (1994), in one as yet unpublished paper, have also 
considered viscous effects which, for large values of the Reynolds number, were found 
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to become important first in the critical layers far from the wall and then in the wall 
layer. 

In the present work it is shown that an aperiodic flow with many characteristics in 
common with the bursting turbulent flow detected experimentally in Stokes layers, can 
be generated even in the two-dimensional case by the interaction among the 
momentarily unstable modes predicted by Blondeaux & Seminara (1979) and the 
forced modes induced by wall imperfections. 

Many works have been devoted to the study of the Stokes flow over a plate 
characterized by the presence of a small-amplitude waviness. Lyne (197 1) studied the 
viscous boundary layer induced by fluid oscillations near a wall characterized by 
presence of a two-dimensional waviness of amplitude e* much smaller than the 
characteristic viscous length 6*. Moreover he restricted his attention to small or large 
values of the ratio K between the amplitude of fluid displacement oscillations a* and 
the wavelength I* of the wall waviness. These asymptotic values of K were also 
considered by Sleath (1976). Later Kaneko & Honji (1979) extended Lyne's theory by 
considering higher-order solutions in the parameters €*/a* and a*/Z*. More recently 
Blondeaux (1990) and Hara & Mei (1990) determined the oscillatory flow over a two- 
dimensional wavy wall for values of K of order one, assuming infinitesimal values of 
€*/a* and of e*/l* respectively. Finally Vittori (1988) extended these works by 
considering values of a*/l* of order one but including nonlinear effects in the 
parameter c*/6* and considering three-dimensional wall profiles of small amplitude 
(Vittori 1992). However, none of the above works can provide an explanation for the 
presence of large perturbations of the Stokes flow since all the above analyses find 
corrections of the Stokes flow which scale with the amplitude of the wall waviness, 
which is assumed infinitesimal. 

Here we study the viscous oscillatory flow over a two-dimensional wall waviness of 
small amplitude with the further assumption of large values of the parameter K, the 
ratio between the amplitude of fluid oscillations and the wavelength of wall waviness. 
This problem has already been tackled by Lyne (1971) who focused his attention only 
on wavelengths much larger than the boundary-layer thickness &*. In contrast we 
consider wavelengths of the same order of magnitude as 6". Taking into account that 
K is equal to +R,(6*/1*), the analysis is carried out for S*/l* of order one and large 
values of R,. The present results show that for 6*/1* of order one, resonance may 
occur. Indeed, using a linear scheme and neglecting terms of 0(1/K), it is found that 
when the Reynolds number is larger than a critical value, an instant within the 
decelerating parts of the cycle exists in which an infinitesimal wall waviness, 
characterized by a wavelength which depends on R,, induces perturbations in the 
Stokes flow which turn out to develop an infinite peak. At this stage the only 
requirements of the analysis are e < 1 and R, $ 1. The infinite peak can then be 
removed, including the effects of the local acceleration which, for sufficiently small 
values of e, are more important than nonlinear effects. For moderate values of R, the 
bounded amplitude of the perturbations can be determined by means of a multiple- 
timescale approach (Kevorkian 1971), which takes into account the damping effect of 
the local acceleration term only within a small time range around resonance. However, 
on increasing the Reynolds number, the asymptotic approach fails because the local 
acceleration effects spread over the whole cycle. The problem can then be tackled by 
means of the approach described in Blondeaux (1990), which however becomes 
computationally heavier for increasing values of R,. Thus a numerical procedure 
should finally be used. The use of a numerical procedure also allows the inclusion of 
the nonlinear terms and the study of the interaction among the flow perturbations 
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forced in the Stokes flow by the wall waviness and the free modes studied by Blondeaux 
& Seminara (1979). 

A contribution is thus made to boundary receptivity studies, where the effects of 
non-localized irregularities are investigated (for a review of the effects of localized 
disturbances, the interested reader is referred to Goldstein & Hultgren 1989). 
Experiments on the Blasius boundary layer by Corke, Bar Sever & Morkovin (1986) 
and Reshotko (1984) show that wall roughness can be a source of short-wave 
disturbances. In the above investigations a steady free stream was considered, so that 
the roughness is expected to induce only stationary disturbances. These disturbances, 
however, (Reshotko 1984) are involved in the development of the travelling 
eigenmodes. More recently Crouch (1992) has presented an analysis for the acoustic 
receptivity of Blasius boundary layers over a surface characterized by a small waviness. 
However, the free stream is assumed to be the sum of a steady term plus an acoustic 
wave of small amplitude. 

Interesting results are found in the present contribution where a pure oscillatory 
external flow is considered. Indeed by means of the numerical procedure it is found that 
even when neglecting three-dimensional effects the oscillatory flow over a wavy wall is 
characterized by bursts of an aperiodic motion which take place during the decelerating 
parts of the cycle and can be interpreted as the onset of turbulence. 

The structure of the rest of the paper is the following. In the next section we 
formulate the problem. The solution procedure is presented in $ 3 along with the results 
which show the existence of the resonance previously outlined. In $4 the passage 
through resonance is studied by means of both a multiple-scale technique and by a 
numerical approach. The relevance of the work in explaining transition in the Stokes 
boundary layer is discussed in the final section. 

2. Formulation of the problem 
Let us consider a wavy wall bounding a viscous fluid of density p and kinematic 

viscosity v. We refer to a fixed Cartesian coordinate system (x* ,y*)  and describe the 
wall profile by the following relationship : 

y* = e * ~ ~ ( x * ,  t*) = c* exp la* x* - u*(t*) dt* + C.C. , [ . (  l 1 1 
where C.C. denotes the complex conjugate of a complex number. 

a* oscillating in the x* direction with velocity u*(t*). We assume 
It is easy to see that (1) represents a wavy wall of amplitude 2e* and wavenumber 

u*(t*) = $U,* (eiw*t* +c.c.), (2) 

where U z  and w* are the amplitude and the angular frequency of the velocity 
oscillations of the wall. 

The flow induced in the fluid by the wall oscillations is described in terms of the 
stream function by the vorticity equation and boundary conditions which force no-slip 
at the wall and decay of the flow far from the wall. 

Introducing the following dimensionless variables : 

(x, y ,  €, a-1) = (x*, y*, €*, a"-l)/CY*, t = t*w*, $ = $* /Ut  CY*, (3) 

where 6* = (2v/w*)i  is the conventional thickness of Stokes boundary layer, the flow 
problem becomes 
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- a$ 
-- 0, -=!#'+c.c. at y = ql, 
ax aY 

Herein the Reynolds number R, is defined as U,* 6*/v. 

3. Linear analysis 
3.1. The solution 

Assuming 6 to be small, it is feasible to expand the forced solution in powers of e. 
Moreover, because at order one the wall turns out to be plane, the leading-order term 
of the stream function will be taken to be independent of x, hence 

$(x, Y ,  t) = $o(Y, 0 + € $ l ( X , Y ,  t> + We2). (7) 

Substituting from (7) into (4), (6) and equating like powers of E ,  differential 
equations are obtained at the various orders of approximation which are examined in 
sequence. 

At order one the Stokes solution is readily obtained: 

At order el the following equation is found 

along with the boundary conditions which come from the no-slip condition at the wall 
and the matching of the flow with the fluid at rest far from the wall 

Considering large values of the Reynolds number R,, the solution can be expanded 
in the form 

(12) 

r rt 1 

where P(t) = exp -$aR, u(t)dt . L Jo 1 
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At the leading order of approximation in the parameter R;', substitution from (12) 
and (13) into (9)-(11) leads to the classical Orr-Sommerfeld equation with non- 
homogeneous boundary conditions 

$ o + ~ ,  CQ,+O for y-too, (16) 
aY 

where the operator N2 is defined by 

(17) 
a 2  

aY2 
N2 --a2. 

In (14) the viscous term is retained since it turns out to be significant at leading order 
in a viscous layer close to the wall, the thickness of which is of order R;f and within 
critical layers where a@o(y,t)/ay equals the plate velocity u(t). A more formal 
approach would first require the solution of the inviscid version of (14). The latter is 
singular for values of y such that &,k0(y, t)/ay = u(t). Hence in critical layers close to 
such singular planes viscous terms should be retained. The inviscid solution should 
then be matched with the solutions in the critical layers. Such a procedure would 
involve a lot of tedious and heavy algebra. The direct solution of the problem (14)-(16) 
has thus been preferred. 

In the Appendix it is shown that, for values of t around nn when the wall critical 
layer is the only one, the solution of (14) coincides, to the required order of 
approximation, with the solution obtained on the basis of a matched asymptotic 
approach. It is also worth pointing out that the numerical solution of the problem, 
where the fluid domain is split into an inviscid region and viscous layers, provides 
results coincident to the order required with those obtained by the solution described 
below. 

We may note that the time variable t appears only as a parameter in (14). This is 
because of our insistence on a periodic solution with the same angular frequency of the 
forcing term which implies that @/at)  - O( 1) and hence (2/R,) @/at) 4 1. 

Equation (14) can be solved at each instant of time in terms of a double series 
expansion based on the following constructive procedure developed by Seminara & 
Hall (1976) and used in a similar context by Blondeaux & Seminara (1979). In the 
absence of the convective terms, (14) has twq-solutions which, for large values of y, 
decay, being proportional to e-ay and to e-uy (g(t) = [a2-iiaR,u(t)]i). Since each of 
these basic solutions interacts with the basic flow, an infinite sequence of terms is 
required in the final solution in order to achieve an appropriate balance. Thus one is 
led to the following form of the solution: 

c o n  

n=o m=o 
$o( y, t) = C C at,)m( t) exp { - [a + n( 1 + i) - 2im] y )  

c o n  + C b:,),(t)exp{-[a+n(l +i)-2im]y}. (18) 
n=o m=o 
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which are obtained by forcing (18) to satisfy (14); hence 
The coefficients are expresed in terms of at\ through recursive relationships, 

where 

0, m = n  0, m = O  
x ~ , ~  = -[a+n(l +i)-2im]. 4 ={ 1, O d m G n - 1 ,  1, l d m b n ,  

Similarly the coefficients bt,)m can be expressed in terms of b;’, through relationships 
analogous to (19) where x ~ , ~  are replaced by which is the quantity 
(-[a+ n( 1 +i)- 2iml). 

We note that the solution (18) vanishes at infinity as required by boundary 
conditions (6) while the no-slip condition at the wall leads to the following algebraic 
linear system for at’, and bt’,: 

c o n  m n  

at’o C C (a:,)m/at’o> + bt\ C C (b$‘,)m/bt\) = 0, 
n=o m=o 

c o n  

n=O m=O 

m n  

a:\ n=O C m=O C (a:,),/at’o) xn, + bt’o n=o C m=o C (b:,)m/bt’,) On,  I = +( 1 + i) eit + c.c., 

which allows the flow to be completely determined. 
The solution of system (20) requires a relative modest numerical effort, even for large 

values of the Reynolds number when the number of terms which must be retained in 
the expansion (1 8) is relatively large. Indeed the inversion of a 2 x 2 matrix can be easily 
performed and the evaluation of the coefficients a:,),,b:,), does not lead to a 
prohibitive amount of computation. At this stage it is useful to point out that the series 
expansions (18) are truncated at n = N l .  Numerical experiments showed that 
satisfactory convergence is achieved for values of Nl that increase as R, increases. 
However the values of N,,  for the range of R, of interest, are relatively small. 

At flow reversal when u(t)  vanishes, (18) ceases to be valid. Indeed a(t) is found to 
be equal to a and the two independent solutions ecay and ecUy, which have been found 
by neglecting convective terms, become ePay and yepau. However, it can be easily 
verified that at t = +IT and :IT the function $o can be expressed in the following form: 

c o n  

$ O ( Y ,  t )  = C C cn,m(t>ex~{-[ol+n(l+i)-2imI~} 
n=o m=o 

m n  

where the coefficients cn,m and dn,m can be evaluated by means of recursive 
relationships similar to (19) and the values of co,o and do,,  can be determined solving 
an algebraic linear system similar to (20). It is worth pointing out that the solution 
turns out to be continuous since (18) tends to (21) when t approaches +IT and +n. 

3.2. Results 
As pointed out in the introduction, the boundary layer generated by the harmonic 
oscillations of a fluid adjacent to a fixed wavy plate has received considerable attention. 
We have mentioned above some of the works on the subject where different ranges of 
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FIGURE 1. Spatial structure of the correction to the stream function induced by a wall waviness in the 
Stokes flow ($.,(x,y, t ) ) :  a = 0.01, t = 0. (a) R, = 5 ,  (b) R, = 50, (c) R8 = 500. Left-hand plots: 
analytical results of Blondeaux (1990) (A$l = 0.48). Right-hand plots: results = 0.48). 
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the parameters have been analysed. In particular Lyne (1971) assumed the amplitude 
of the wall waviness to be much smaller than 6* and considered large values of 
K ( K  = aR,/4n) and wavenumbers a such that a - O(R,)-S. 

Similarly the present solution holds for small values oft: and large values of R,, but 
it considers values of a of order one. The investigation of the range a = O( 1) has shown 
the existence of a resonance effect in the oscillatory flow over a wavy wall. Indeed 
the Stokes flow is modified, owing to the presence of a wall waviness, by the term 
[t:P(t) &(y,  t )  eiaz + c.c.] plus corrections of order (2, EIR,). The function $,, is given by 
(18) and is finite when the determinant D of the system (20) does not vanish. When D 
approaches zero, a!),, and bt),,  tend to infinity and the correction of the Stokes flow is 
no longer bounded : resonance occurs, i.e. wall waviness triggers a natural response of 
the system. 

Before discussing in detail this resonance effect, let us look at the results related to 
the case when D does not vanish and analyse them for values of the parameters that 
allow a comparison with previous analyses. The fact that a is of order one means that 
the results of Vittori (1988) and Blondeaux (1990) can be used as a check. However, 
this comparison can be performed only for fairly large values of R, or conversely for 
quite large R, but small 01 since the approaches by Vittori (1988) and Blondeaux (1990) 
become too expensive for aR, larger than values ranging from about 10. In figure 1 the 
correction to the Stokes flow induced by the waviness is shown in the (x, y)-plane at the 
same instant within the cycle for fixed a and for different values of the Reynolds 
number. In the left-hand plots results obtained by means of the approach described in 
Blondeaux (1990) are shown, while the present results are plotted in the right-hand 
plots. Incidentally we point out that the approach described in Vittori (1988) provides 
results practically coincident with those of Blondeaux (1990). The present solution is 
quite different from that of Blondeaux (1990) when R, = 5, but they tend to agree, as 
expected, when larger values of R, are considered. For R, = 500 the two solutions are 
almost coincident. Similar results are found for other values of the parameters. 

As previously pointed out, the present solution allows us to obtain results for values 
of a of order one and large R, when other approaches fail. In figure 2 the spatial 
structure of the correction to the Stokes flow is shown at t = 0 for different values of 
a when R, = 250. According to Vittori’s (1988) findings only two recirculating cells 
within a wavelength are found, R, being large and a of order one (see figure 8 of Vittori 
1988). Looking at figure 2, it is necessary to recall that solution (18) can be split into 
two parts: the former related to the values of a and of the coefficients the latter 
related to the values of o(t) = [az-iaR,u(t)]~ and of the coefficients bc,),q),. Increasing a, 
with R, fixed, the two parts decay more rapidly in the y-direction and the two cells 
appearing in figure 2 decrease in height: the region affected by the waviness turns out 
to be of the same order of magnitude as its wavelength. When a is kept fixed and R, 
is increased, only r~ increases and only the second part of the solution is affected, 
keeping constant the thickness of the region affected by the wall waviness. 

A wider discussion of the influence of a and R, is unnecessary in the present context. 
On the other hand it is of interest to analyse the resonance effect briefly described 
previously. For particular values of a and R, and at particular instant within the cycle, 
D tends to vanish. It can be easily verified that in this situation wall waviness triggers 
a natural response of the Stokes flow which is characterized by a timescale S*/U,*, 
faster than the basic timescale 2n/o* when R, is large. These free modes of the Stokes 
flow were analysed by Blondeaux & Seminara (1979), who studied the stability of the 
Stokes layer using a ‘momentary’ criterion for instability of the kind introduced by 
Shen (1961) and discussed by Seminara & Hall (1975). Blondeaux & Seminara (1979) 
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FIGURE 2.  Spatial structure of the correction to the stream function induced by a wall waviness in 
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studied the time development of perturbations of infinitesimal amplitude, the stream 
function of which can be assumed to be of the form 

@ = E@,,( y ,  t) exp ip x - R, c(t) dt + C.C. + O(eRil, e2), " s 11 
where /3 is the perturbation wavenumber, the real part (c,) of c is the wavespeed of the 
perturbation and the imaginary part (ci) controls its growth or decay. Substituting (22) 
into the vorticity equation and using the appropriate boundary conditions, a problem 
similar to (14F(16) is found, where the complex growth rate 24t) replaces the plate 
velocity u(t) and homogeneous conditions at the wall replace (15). The eigenrelation 
f(p, R,, t ,  c) = 0, which allows values of cP0 different from zero, is determined in 
Blondeaux & Seminara (1979). It is now clear that if values of R,, a and t are found 
such that a = p, u(t) = 2c,(t) and ct(t) = 0, the wall waviness triggers a natural 
response of the system. 

An example of the behaviour of c is shown in figure 3 as a function of time for 
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FIGURE 4. The value of a that causes resonance plotted versus R,. 

R, = 200 and different values of /I. In figure 3 iu(t) is also plotted. For every value of /3 
an instant of time within the cycle exists such that c,(t) = fu(t), but only for a particular 
value of /I does this instant coincide with the instant at which c,(t) vanishes. For 
R8 = 200 it is found that resonance occurs at t = 1.2188 when a is equal to about 
0.1948. 

The values 01, of a that are able to induce resonance are plotted versus R, in figure 
4, while figure 5 shows the instant t, within the cycle at which resonance occurs. Since 
it can be shown that, for a fixed value of p, when c(t) is an eigenvalue 
c(t) = - c,(t + n) + ici(t + n) is also an eigenvalue, resonance is present every half-cycle. 

It is thus found that when the Reynolds number is larger than a value (RJR which 
is about 100, infinitesimal wall perturbations with a particular wavenumber which 



Stokes-layer transition 

1.4 

1.3 

t ,  
1.2 

1.1 

119 

. 

. 

. 

. 

r 

1.0 r 
0 100 200 300 400 500 

R, 
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depends on R, may excite the resonant growth of a spatially synchronous flow mode 
and induce, during the decelerating parts of the cycles, large modifications of the 
Stokes flow. In this situation, in order to gain quantitative information on the 
amplitude of the perturbations of the Stokes flow, the local time derivative term and/or 
nonlinear terms should be taken into account. In the following section it will be shown 
that nonlinear effects can be ignored and the local acceleration effects serve to damp 
the resonant peak. 

4. Passage through resonance 
4.1. The asymptotic approach 

Under the assumptions formulated in $02 and 3, we analyse the flow induced by the 
oscillations of the wavy wall at resonance, i.e. when R, exceeds (RJR and a and t differ 
from a, and t, respectively by a small amount which will be defined precisely in the 
following. There are two possible damping mechanisms that might lead to resonant 
solutions of bounded amplitude: the former is due to the inclusion of that part of the 
local acceleration that has been dropped in (9) being negligible far from resonance, the 
latter is related to the inclusion of nonlinear terms. However, if e is assumed to be much 
smaller than Rsl, after the introduction of a fast timescale 7 which scales on some 
power of R, and takes into account the rapid variations of the solution around 
resonance, the analysis of the problem reveals that the system is governed by a partial 
differential equation characterized by weak nonlinearities and with coefficients slowly 
varying in time. As suggested by Kevorkian (1971), in such systems the damping of 
resonance is due to the local acceleration term and nonlinearities can be ignored. 

Let us thus consider the case when the explosive growth of flow perturbations, which 
is present for t tending to t,, is inhibited by the presence of the local acceleration of the 
fluid. As a preliminary we need to estimate the order of magnitude of the amplitude of 
flow perturbations when R, is larger than (RdR and (a, t )  is in the proximity of (a,., t,) 
and fix the time range within which resonance takes place ((t-t,) = 7R;Yz). Let us 
assume the fundamental component of the perturbation to be of order eRp with y1 and 
yz real exponents to be determined. At the lowest order, the solution should behave like 

$ = $ro + eRg A(7) P(t) $ll(y, t )  eia”+c.c., 

with A a complex amplitude function to be determined. 
At second order the fundamental is reproduced because of the local time derivative, 
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giving rise to secular terms. Hence provided the condition y1 + y 2  - 1 = 0 is satisfied, 
the reproduction of the fundamental occurs at the same order (O(E)) at which the 
forcing effects of the wall waviness appear, and the requirement of suppression of 
secular terms also leads to suppressing the singular behaviour of the solution predicted 
by the linear theory. Moreover, in order to get a solution for the amplitude function 
A(r) which decays when 171 tends to infinity, i.e. far from resonance, y1 is required to 
be equal to y 2 .  Indeed when y1 = y 2  the deviation of $o from the value at t ,  gives a 
contribution at order E which avoids the exponential growing behaviour of A(r). It 
turns out that y1 = y 2  = and a may differ from a, by an amount of order R$, i.e. 
a = a, + R,; al. 

Hence we expand the solution in the following form: 

$(Y,  t )  = $o(Y, t ) + & 4 ( 7 ) $ l l ( Y )  
+ $12( y ,  7) + O(R$)] eiaZ + C.C. + 0(e2R8), (23) 

having introduced a fast timescale r = ( t  - t,) Rj. Substituting (23) into (4)-(6), the 
following problem is obtained at O(E@) : 

(25) 

(26) 

a $ l l -  

aY 

alC.11 

aY 

kl1 = 0, - - 0 at y = 0, 

$11+0, -+0 for y + w ,  

where N, is simply N with a set equal to a,. 

out to be relevant close to the wall and within critical layer where 
Again, as previously explained, the viscous term is retained in (24) because it turns 

y,  t,)/ay equals 

Because at this order a = a, and t = t,, a non-trivial solution can be found following 
the procedure outlined in $3.1. The unknown function $11 can be determined by a 
double series expansion similar to (18) and the system providing the constants a t ; ,  bt\ 
(corresponding to at\, bt\ appearing in (18)), turns out to be a homogeneous system 
with a vanishing determinant. The solution is thus determined but for an arbitrary 
constant which can be incorporated in the amplitude function A(7). 

At O(e) the following non-homogeneous problem is obtained : 

u ( t J  
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The homogeneous part of the problem (27)-(29) admits a non-trivial solution and a 
solvability condition must be satisfied (see Coddington & Levison 1955, p. 294). The 
analytical approach previously described to find $11 provides a convenient way to force 
such a solvability condition and can be used to determine Indeed a particular 
solution $if) of (27) can be found by assuming 

and by determining separately $ifj(i = 1,2,3) using an expansion similar to (18). 
Once the particular solution $$) is determined along with the independent solutions 

oo n 
$&) = C C %exp(-[a+n(l+i)-2im]y}, 

n=om=o UO,b 

of the homogeneous problem, the general solution can be obtained in the form 

fi A7 + $if! A, 
dA 

$12 = a& $$) + bt)o $g) + $3 d7 + $1 

where the constant ach, bF)o should be determined to satisfy the boundary conditions 
at the bottom 

dA 
a ( 2 )  $(I) I +b(2) $(2) I - -$(P) I 

0 , o  12 y=o 0 , o  12 y=o - 121 y-0 & - $if; Iy=o AT - 11.g; ly = o  A, 

Because the determinant of system (32) vanishes, a solvability 

dA 
-+a~A+bA+c = 0, 
d7 

forced which reads 

where 

a =  

condition should be 

(33) 

(34 4 

The term UTA in (33) is the ‘damping effect’ which comes from the deviation of the 
time-dependent terms from their values at t = t,. The term bA is proportional to a1 and 
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-4 1 
FIGURE 6. The real value of the coefficient a appearing in (34) plotted versus R,. 

represents the detuning effect which is present when the wall waviness has a wavelength 
that is not exactly equal to that characteristic of the marginal unstable modes travelling 
with the wall speed u(t,). The constant c describes the receptivity mechanism, i.e. the 
triggering of free modes by the wall waviness. 

The solution of (33) is straightforward and reads 

A = e x p [ - i a ~ ~ - b ~ ]  exp[iac+blJd< (35) 

The value of the constant A,  can then be determined by proper matching with the 
solution valid far from t,. Once the solvability condition for the system (32) is forced, 
$12 can be obtained but for an amplitude function to be derived at order eR,;. 
However, this lengthy procedure has not been carried out because this asymptotic 
approach fails for moderately large values of R,. 

Indeed (35) turns out to be meaningful only when the real part of a is positive, 
otherwise A tends to infinity when It - t,l increases. When the real part of a is negative, 
the damping effect of local acceleration cannot be taken into account by means of the 
multiple-scale approach previously described, because such effect spreads over the 
whole cycle. Then (9) along with the boundary conditions (10) and (1 1) should be 
solved. 

As shown in figure 6 the real part of a turns out to be positive only when R, is larger 
than (RJR but smaller than 138. To gain some qualitative information on the structure 
of the solution in this range of R,, some examples of the behaviour of A(T) are plotted 
in figure 7 for different values of R, and 0 1 ~  = 0. Because of the equality between 01 and 
a,, the constant A,  vanishes. In fact at a first order of approximation, the outer solution 
for t tending to t, turns out to be odd, thus forcing A,  to vanish. From the results 
plotted in figure 7, it appears that within a small time range around resonance, the 
oscillatory flow over a wavy wall is characterized by large and rapid fluctuations which 
are also rapidly damped. 

As previously pointed out, for R, larger than 138, the problem posed by (9) along 
with boundary conditions (10) and (11) should be solved. In Blondeaux (1990) a 
solution is described, and details of the method can be found there. However, it is 
worth summarizing here the main features of the procedure. 

First is assumed to be of the form 

= $,(y, t> eias + c.c. (36) 
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Secondly the unknown function J0(y ,  t) is developed in a Fourier series of time 

P. Blondeaux and G. Vittori 

+m 

$o = C Gm(y)eimt (37) 
m=-m 

Substituting from (36) and (37) into the partial differential equation (9), an infinite 
set of ordinary differential equations for the coefficient G, is obtained. The structure 
of the solution can be found with an argument similar to that leading to (18): 

n=-m I j=o 
m 

+ (1 -8no) bn C enrnjex~ [- [g, + (m-n)i+jI VI 
j = O  

m 

+ bo C {Pmj exp [-[a +mi +jlyI + y m j y  exp [-  [a +mi +jlvl>, (38) 
j = O  

where g, = (az + 2ni)t. 

The constants hnmj, Onmj, Pmj, ymj are given by recurrence relationships somewhat 
similar to (19) and the constants a,, bn are determined by imposing the boundary 
conditions at y = 0 after truncating the expansion (37) at the Mth term. 

In figure 8 the function $o at y = 3 is plotted versus time for R, = 100 and different 
values of a. It can be seen that, in accordance with the multiple-timescale approach 
previously described, the stream function around resonance is characterized by large 
and rapid fluctuations which damp far from t,. Moreover, resonance is smoothed 
rapidly when values of a smaller than a, are considered while it persists longer when 
a is larger than a,. No qualitative difference can be observed for different values of R, 
and in particular when R, is larger than 138, when only the approach by Blondeaux 
(1990) can be applied. 

Unfortunately the approach described in Blondeaux (1 990) becomes compu- 
tationally heavy with increasing R, and finally a numerical procedure should be used 
for R, larger than about 200. 

4.2. The numerical approach 
The solution of the problem (9)-(11) can be found numerically by means of an 
approach similar to that described in Blondeaux & Vittori (1991 a). Because of the use 
of a numerical procedure, the effects of the nonlinear terms can also be taken into 
account by tackling the problem posed by (4)-(6) which reduces to (9)-(11) when small 
values of 6 are considered. Moreover arbitrary values of R, can be considered. First, let 
us adopt a coordinate system (2,j) that moves with the bottom 

2 = x-2[()dt, eit + C.C. p = y ,  (39) 

and introduce a new stream function 

3 = @-yi(eit+c.c.). (40) 
The problem is thus reduced to the equivalent problem of determining the flow 

induced close to a fixed wavy wall by the harmonic oscillation of the fluid far from it. 
Let us then consider a wall profile p = F(i, t) described by 

m m 

jj = C an cos (nat-cp,), [ = i+ C a, sin (na(-cp,), (41) 
n=o n=O 
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where < is a dummy variable. It can be easily verified that, with a proper choice of the 
constants a,, vn, (41) can be used to describe a sinusoidal wall of small amplitude e with 
an arbitrary degree of accuracy. To determine & it is useful to introduce a new 
orthogonal coordinate system (5,s) defined by 

m m 

7 = 7-  a,e-""Tcos(na[-y,), < = 2+ C anei"~sin(nat-cpn), (42) 
n=o n=o 

which maps the bottom profile into the line T = 0. Substitution of (39)-(42) into (4)-(6) 
leads to the following partial differential problem : 

- 0  at q=O,  
a& - a& 
Z-F- (45) 

where J is the Jacobian of transformation (42): 

J = 1 - 2 
m m 

naa, eCn"V cos (nat - q,) -t C m a ,  ecnaV cos (nat -vn) 
n=O [ n=O 

7 co 
+ C naa, eCn"V sin (na[ -v,) . (47) 

The problem formulated above can be solved numerically following the procedure 
described in Blondeaux & Vittori (1991~) which makes use of spectral methods and 
finite-difference approximations. First, the values assumed within a wavelength by the 
stream function $([, q, t )  and the vorticity &([, 7, t) on a regular grid in the &direction 
are considered : 

[ n=O 

Then the discrete Fourier coefficients are introduced (Orszag 1971) 

j =  1,2 ,..., N2.  (49) :I N2-1 

n=o 
IJ~(T,  t )  = 2 ~ ~ ( 7 ,  t )  ei2*fi(i'Nz) 

Q,(T, t )  eizxn(jlNJ 
N,-1 

hjj(?, t )  = 
n=O 

System (43)-(46) is thus reduced to a time-dependent boundary-value problem in the 
variable T where the unknowns are given by the functions gn,En and which is 
amenable to a classic computational approach. More details can be found in 
Blondeaux & Vittori (1991 a). Numerical experiments have been performed to choose 
the characteristics of the numerical grid and to test the accuracy of the results obtained, 
which turn out to be affected by a relative error always smaller than 0.01. In all the 
simulations the fluid is at rest till t = in and then the oscillatory flow from the wall 
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FIGURE 9. Time development of PI at = 1.0 for R, = 400, CL = 0.122 and E = 0.125. (a) N ,  = 4, 
(b) N ,  = 16. Arrows denote resonance instants. 

starts. The flow is always observed to evolve in a ‘regime’ configuration which depends 
on the values of the parameters (namely e, a, R,). For small values of e and R,, when 
a is of order one, the attractor turns out to be a limit cycle. On increasing R, the flow 
turns out to be aperiodic. However, the characteristics of the attractor have not been 
determined because of the high computational costs (Blondeaux & Vittori 1991 b). 

The time development of Yl at 7 = 1 is shown for R, = 400, a = a, = 0.122 and 
e = 0.125, in figure 9. In figure 9(a) the solution has been obtained by setting N ,  = 4, 
while figure 9(b) shows the results obtained with N ,  = 16. The numerical solution of 
the problem (4)-(6) for N ,  = 4 corresponds to the numerical solution of the problem 
posed by (9k(13), i.e. to the solution of the linear problem. On the other hand the 
solution for N ,  = 16 takes into account nonlinear effects. By comparing figures 9(a)  
and 9(b), it appears that (i) resonance is damped by the local acceleration term since 

5-2 
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the solution shown in figure 9(a) is characterized by a finite time development even 
though it has been obtained by neglecting nonlinear effects; (ii) for sufficiently small 
values of E ,  nonlinear effects are negligible. Indeed even when c = 0.125, the solutions 
for N,  = 4 and N ,  = 16 are almost coincident. The differences between the N ,  = 4 and 
N ,  = 16 cases increase for increasing values of E even though they remain of small 
amplitude, if E does not become too large. The number of superharmonic components 
necessary to describe the solution with sufficient accuracy depends on the parameters 
of the problem, namely R,, a, E .  For the values of the parameters shown in figure 9, a 
value of N ,  equal to 16 gives sufficient accuracy. Indeed the solution obtained by 
setting N,  = 32 is coincident with that plotted in figure 9(b). As expected, the solution 
is characterized by large and rapid fluctuations that appear at fixed time within a cycle 
and then damp. 

When smaller values of a are considered, the amplitude of the fluctuations decreases 
(see figure 10a). In fact the parameters depart from the set that produces resonance and 
the solution tends to become of order c and to be smooth. On the other hand when 
values of a larger than a, are considered the amplitude of the fluctuations increases (see 
figure lob). This unexpected finding is due to the excitation of free modes, which grow 
during the unstable time intervals as predicted by Blondeaux & Seminara (1979). 
Indeed the numerical solution involves both the forced response of the flow to the wall 
waviness and the time development of free modes. The latter, in the case of a wavy wall, 
are continuously exited because of the presence of the external forcing. Thus it turns 
out that free modes, which are momentarily unstable, explode every half-cycle even 
though they are stable on the average as predicted by Hall (1978). By increasing a, the 
fluctuations of the solution are larger than those at resonance, even though the forced 
component should be smaller. It is worth pointing out that for R, = 400, the unstable 
wavenumbers were found by Blondeaux & Seminara (1979) to fall in a large range 
centred around a, = 0.5 and instability takes place at flow reversal. Thus for R, = 400, 
the perturbations characterized by CI = 0.04 are less unstable than those characterized 
by a = 0.24. The growth of free modes also provides an explanation of the aperiodic 
character of the flow detectable in figures 9 and lO(b). In fact the explosion of flow 
perturbations within the unstable parts of the cycle leads to different values of the 
stream function at every half-cycle, because the initial values of the perturbations 
change every half-cycle due to numerical and truncation errors. Very small differences 
in the initial conditions amplify because of the flow instability. The mechanism that 
sometimes leads the present flow to an aperiodic time behaviour is thus different from 
that which causes the chaotic time development of the oscillatory flow over a large- 
amplitude wavy wall detected by Blondeaux & Vittori (1991 b). In the latter case, the 
chaotic behaviour is present even at moderate values of the Reynolds number and of 
course is produced by the presence of the nonlinear terms, i.e. it is due to the nonlinear 
interaction of the large vortex structures generated by flow separation at the crests of 
the wall waviness. On the other hand the present results show an aperiodic stream 
function even in the linear case, i.e. for very small wall amplitudes, when flow 
separation is absent. 

No qualitative differences in the solution can be observed as R, changes, except for 
the disappearance of the aperiodic behaviour when small values of R, are considered. 
In fact on decreasing R, the flow becomes stable and only the forced mode is given by 
the numerical solution. 
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5 .  Conclusions 
Modifications induced to the structure of the Stokes boundary layer by wall 

imperfections have been studied when the amplitude of the wall imperfections is much 
smaller than the boundary-layer thickness and for large values of R,. 

The present results, along with those derived on the basis of a linear stability 
analyses by Hall (1978) and Blondeaux & Seminara (1979), the three-dimensional 
numerical simulations performed by Akhavan et al. (1991) and the recent theoretical 
findings by Wu (1992), suggest some speculations on a possible route to turbulence in 
Stokes layers. 

The numerical calculations by Akhavan et al. (1991) and the nonlinear stability 
analysis by Wu (1992) seem to suggest that the turbulence bursts observed in flat Stokes 
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boundary layers during the decelerating parts of the cycle are produced by the growth 
of three-dimensional disturbances interacting with two-dimensional waves. While no 
justification is provided in the work by Akhavan et al. (1991) for the pre-existence of 
the two-dimensional finite-amplitude waves, in the paper of Wu (1992) the growth of 
the two-dimensional component is shown to be caused by its interaction with the three- 
dimensional waves. In both cases however, the three-dimensional character of flow 
perturbation is essential. One of the referees pointed out that Wu & Cowley (1994), in 
an as yet unpublished paper, have shown that interacting two-dimensional modes can 
also develop a finite time singularity and attain a finite value. 

In the present contribution the existence of another possible mechanism triggering 
transition to turbulence in a Stokes layer is discussed. Indeed wall imperfections are 
shown to cause the presence of large two-dimensional waves which, triggering the 
instantaneous growth of two-dimensional free modes, produce a bursting flow with 
many characteristics in common with the experimental observations. The appearance 
of a 'bursting turbulent' flow in the two-dimensional Stokes boundary layer over a 
wavy wall and the key role played by wall imperfections is shown in figure 11 where 
the time development of is plotted for R, = 400. For t smaller than 15.85 the wall 
is wavy with a waviness characterized by many spatial components. For t larger than 
15.85 wall imperfections have been removed, hence the wall is perfectly flat. Within the 
time range 1.57-15.85, i.e. after the start of the fluid motion and before the removal of 
the wall waviness, the flow is characterized by bursts of 'turbulence'. During the 
decelerating parts of the cycle, wall imperfetions cause transition to turbulence by 
triggering the instantaneous growth of two-dimensional free modes through the 
intermediary of the forced mode. However, during the accelerating parts of the cycle 
the perturbations tend to be damped and the flow tends to relaminarize. This may be 
the reason why a clear limit between the laminar and the turbulent regimes has not 
been detected by experimental investigations. 

The overall stability of the Stokes flow over a flat wall with respect to two- 
dimensional perturbations is also evident in figure 11. Indeed after the removal of the 
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wall waviness, i.e. for the flat-wall case, the initial perturbations tends to decay, even 
though there are parts of the cycle during which it amplifies, and after few cycles the 
flow has recovered its full laminar character. 
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Appendix 
We show that keeping the viscous O(Ril) term in (14) is equivalent to a formal 

matched asymptotic expansion approach where viscous effects turn out to have the 
same order of magnitude as convective terms in 'critical' layers of thickness O(Ri4) 
adjacent to the wall and located at distances y such that the quantity (a$,/tly - u(t)) 
tends to vanish. For convenience let us consider values o f t  close to zero in such a way 
that only the viscous critical layer close to the wall exists. 

For large values of R, in a region of y of O(1), the unknown function ykl can be 
expanded in powers of the small parameter (&-* in the form 

$.I")(., y ,  t )  = Rf[&,")(y, t )  + O(R;')] P(t) eiax + c.c., (A 1) 

Substituting from (A 1) into (9) and equating like powers of (R8)-', at the leading 
where C is unknown at this stage. 

order of approximation the following equation is obtained : 

Following a procedure similar to that previously used, it can be shown that the 
solution satisfying boundary conditions (1 1) is 

w n  

$f) = C C fnm( t )  exp { - [a + n( 1 + i) - 2im] y},  (A 3 )  
n=O m=O 

where the coefficients f,,(t) are provided by the recursive relationship 

f,, = (ieithl[(a + (n - 1) (1 + i) - 2im)' - a' - 2i]fn-', 
++e-ith,[(a + (n - 1) (1 + i) - 2i(m - 1))' - a' + 2i]fn-l, m-l}/  

{u(t)[(a+n(l +i)-2im)2-a2]), (A 4) 
0, m = O  

A,={;;  ; J n  , m G n - l ,  4 ={ 1, 1 d m G n .  

The unknown constantf,,, cannot be determined in such a way as to satisfy both 
( loa )  and (lob). The existence of a viscous layer close to the wall is thus inferred. A 
balance between the order of magnitude of convective and viscous terms suggests that 
the thickness of the viscous layer is O(R$). 

in the inner 
layer is provided by the expansion 

Let us then define 7 = Riy and assume that the unknown function 

$?) = [ R ~ ~ ~ f ) + O ( R ~ ~ ) ] P ( t ) e i a x + c . c . ,  (A 5 )  

where the order of magnitude of $:) is forced by the boundary condition (lob). 
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FIGURE 12. Spatial structure of the correction to the stream function induced by a wall waviness in 
Stokes flow ($.,(x,y, t ) ) :  R, = 500, CL = 0.5, t = 0. Outer region, O(y) = 1. (a) Equation (18), (b) 
equation (A 3) (AP1 = 0.04). 

At the leading order of approximation, (9) and boundary conditions (10) give rise to 
the following problem for $f) : 

(0 
$f) = 0, - a'o - - G(t) at 7 = 0, (A 7a,  b) 

where G(t) = f(1 +i)eit+c.c. (A 8) 

av 

Moreover it should be remembered that $f) for 7 tending to infinity should match 

Defining w = (iaG(t))iv and after some algebra, the Airy equation is obtained and 
$?) for y tending to zero. 

the solution of (A 6) can be easily found to be 

$f) = a + b w + c l d u l A i ( - a ) d a + g  (A 9) 

where Ai and Bi are Airy functions. 
Boundary conditions (A 7a, b) force 

a = 0, b = (ia)-iG(t)i. 

The matching of the limiting form (A 9) as w+ 00 with (A 3) as y +  co gives the 
values of c and g in the form 

c = - i(i,>-5 &, (A 11) 

g = -c, i-1 0 < arg(iG)i < .n, 
1+1  

i + l  
1-1 g = c, .n < arg (iG); < 2.n. 
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Furthermore f,, is forced to be 

with the exponent C set to -+. 
Having an outer expansion valid in the outer region and an inner expansion valid in 

the inner region, we can form a single composite expansion which is uniformly valid 
throughout the whole flow field. 

Figures 12 and 13 show a comparison between (18) and the asymptotic solution just 
described. The two solutions are found to be practically coincident (similar results are 
obtained for different values of the parameter). It may be useful to point out that the 
term (2/R,) (a/at)(N2$,) has been correctly neglected in (14), as it is negligible both in 
the inviscid and in the viscous region. 

As previously pointed out a similar analysis applies for arbitrary values of t but 
considering the existence of other critical layers. 
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